Abstract

H i Lyα (1215.67 Å) and the O i triplet (1302.17, 1304.86, and 1306.03 Å) are bright far-ultraviolet (FUV) emission lines that trace the stellar chromosphere. Observations of stellar Lyα and O i using the Hubble Space Telescope's (HST) most sensitive FUV spectrograph, the Cosmic Origins Spectrograph (COS), are contaminated with geocoronal emission, or airglow. This study demonstrates that airglow emission profiles as observed by COS are sufficiently stable to create airglow templates that can be reliably subtracted from the data, recovering the underlying stellar flux. We developed a graphical user interface to implement the airglow subtraction on a sample of 171 main-sequence F-, G-, K-, and M-type dwarfs from the COS data archive. Correlations between recovered stellar emission and measures of stellar activity were investigated. Several power-law relationships are presented for predicting the stellar Lyα and O i emission. The apparent brightness of the stellar emission relative to the airglow is a critical factor in the success or failure of an airglow subtraction. We developed a predictor for the success of an airglow subtraction using the signal-to-noise ratio of the nearby chromospheric emission line Si iii (1206.51 Å). The minimum attenuated Lyα flux that was successfully recovered is 1.39 × 10−14 erg cm−2 s−1, and we recommend this as a minimum flux for COS Lyα recoveries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.