Abstract

The role of climate driving zoonotic diseases' population dynamics has typically been addressed via retrospective analyses of national aggregated incidence records. A central question in epidemiology has been whether seasonal and interannual cycles are driven by climate variation or generated by socioeconomic factors. Here, we use compartmental models to quantify the role of rainfall and temperature in the dynamics of snakebite, which is one of the primary neglected tropical diseases. We took advantage of space-time datasets of snakebite incidence, rainfall, and temperature for Colombia and combined it with stochastic compartmental models and iterated filtering methods to show the role of rainfall-driven seasonality modulating the encounter frequency with venomous snakes. Then we identified six zones with different rainfall patterns to demonstrate that the relationship between rainfall and snakebite incidence was heterogeneous in space. We show that rainfall only drives snakebite incidence in regions with marked dry seasons, where rainfall becomes the limiting resource, while temperature does not modulate snakebite incidence. In addition, the encounter frequency differs between regions, and it is higher in regions where Bothrops atrox can be found. Our results show how the heterogeneous spatial distribution of snakebite risk seasonality in the country may be related to important traits of venomous snakes' natural history.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call