Abstract

The effects of climate change are often body size dependent. One contributing factor could be size-dependent thermal tolerance (SDTT), the propensity for heat and cold tolerance to vary with body size among species and among individuals within species. SDTT is hypothesized to be caused by size differences in the temperature dependence of underlying physiological processes that operate at the cellular and organ/system level (physiological SDTT). However, temperature-dependent physiology need not change with body size for SDTT to be observed. SDTT can also arise because of physical differences that affect the relative body temperature dynamics of large and small organisms (physical SDTT). In this Commentary, I outline how physical SDTT occurs, its mechanistic differences from physiological SDTT, and how physical and physiological SDTT make different predictions about organismal responses to thermal variation. I then describe how physical SDTT can influence the outcome of thermal tolerance experiments, present an experimental framework for disentangling physical and physiological SDTT, and provide examples of tests for physiological SDTT that control for physical effects using data from Anolis lizards. Finally, I discuss how physical SDTT can affect organisms in natural environments and influence their vulnerability to anthropogenic warming. Differentiating between physiological and physical SDTT is important because it has implications for how we design and interpret thermal tolerance experiments and our fundamental understanding of thermal ecology and thermal adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call