Abstract

By utilizing the bipolarity of 1,2-diphenylphenanthroimidazole (PPI), two types of asymmetrical tripartite triads (PPI-TPA and PPI-PCz) were designed with triphenylamine (TPA) and 9-phenylcarbazole (PCz). These triads are deep-blue luminescent materials with a high fluorescence quantum yield of nearly 100 %. To trace the photophysical behaviors of these triads, their excited-state evolution channels and interchromophoric interactions were investigated by ultrafast time-resolved transient absorption and excited-state theoretical calculations. The results suggest that the electronic nature, asymmetrical tripartite structure, and electron-hole distance of these triads, as well as solvent polarity, determine the lifetime of intramolecular charge transfer (ICT). Interestingly, PPI-PCz triads show anti-Kasha ICT, and the charge-transfer direction among the triads is adjustable. For the PPI-TPA triad, the electron is transferred from TPA to PPI, whereas for the PPI-PCz triad the electron is pushed from PPI to PCz. Exploration of the excited-state ICT in these triads may pave the way to design better luminescent materials in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.