Abstract

Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron-photoion coincidence spectrometer. The laser intensity is held at ≤∼1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e'3Δu(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.