Abstract
Majorana fermions (MFs) are predicted to occur as zero-energy bound states in semiconductor nanowire-superconductor structures. However, in the presence of disorder or smooth confining potentials, these structures can also host nontopological nearly zero-energy states. Here, we demonstrate that the MFs and the nearly zero topologically trivial states have different characteristic signatures in a tunneling conductance measurement, which allows to clearly discriminate between them. We also show that low-energy nontopological states can strongly hybridize with metallic states from the leads, which generates the smooth background that characterizes the soft superconducting gap measured in tunneling experiments and produces an additional decoherence mechanism for the Majorana mode. Our results pave the way for the conclusive identification of MFs in a solid state system and provide directions for minimizing quantum decoherence in Majorana wires.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.