Abstract

Plant residue incorporation improves soil microbial nitrate immobilization, which in turn alleviates nitrate accumulation, thereby improving N retention capacity and reducing N losses. However, how and why the respective nitrate immobilization by fungi and bacteria, which are dominant microorganisms in soil, responds to residue addition remains unknown. By adopting a novel amino sugar-based stable isotope probing approach, we show that both fungal and bacterial nitrate immobilization increased after Paspalum notatum residue addition. The increased proportion of the former was higher than that of the latter, and their difference became much larger with the increased residue addition rate. Furthermore, 70% and 32% of the variations in fungal and bacterial nitrate immobilization activities were explained by their respective biomass. The relative importance of fungal and bacterial nitrate immobilization shifted in a consistent manner with the relative abundance of fungi and bacteria, and the magnitude of these shifts was related to the residue addition rate. Our work demonstrates strong links between increased residue inputs, alterations in microbial community composition, and enhanced ecosystem functioning of nitrate immobilization and retention in soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.