Abstract

BackgroundEcological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not.ResultsWe present EnDED (environmentally driven edge detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally driven. The four approaches are sign pattern, overlap, interaction information, and data processing inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e., environmentally driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally driven edges—87% sign pattern and overlap, 67% interaction information, and 44% data processing inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally driven, while individual methods predicted 24.8% (data processing inequality), 25.7% (interaction information), and up to 84.6% (sign pattern as well as overlap). The fraction of environmentally driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors.ConclusionsTo reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses.39dy5mFVH5LkqSifW2AWwCVideo abstract

Highlights

  • Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood

  • Especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and the number of potential interaction hypotheses

  • To evaluate the performance of EnDED on the Blanes Bay Microbial Observatory (BBMO) network, we considered interactions described in literature and collected in the Protist Interaction Database (PIDA) [10]

Read more

Summary

Introduction

Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. The importance of microbes for the functioning of ecosystems cannot be understood without considering their ecological interactions [5, 6]. These allow transferring carbon and energy to upper trophic levels, and the recycling of nutrients and energy [7]. Ecological interactions influence microbial community turnover and composition. Microbial communities are highly interconnected [9], our knowledge about ecological interactions in the microbial world is still limited [6, 10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.