Abstract

A combination of transient and static techniques has been applied to bulk-heterojunction solar-cells to gain insight into the influence of charge-carrier dynamics and of energy level shifts in the vicinity of the cathode on the open-circuit voltage. Devices with a different thermal-annealing history but with similar active layer-morphology were compared. P3HT:PC60BM bulk heterojunction solar-cells with a standard ITO/PEDOT:PSS/active-layer/Al were investigated. We show that the open-circuit voltage increase that occurs when a sample is annealed before or after cathode deposition is due roughly one third to a shift between the energetics of the photoactive blend adjacent to the cathode and that in the bulk of the photoactive layer and roughly two thirds to a significant increase in the charge-carrier lifetime for this type of solar-cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.