Abstract

Energy transfer between chromophores in photosynthesis proceeds with near-unity quantum efficiency. Understanding the precise mechanisms of these processes is made difficult by the complexity of the electronic structure and interactions with different vibrational modes. Two-dimensional spectroscopy has helped resolve some of the ambiguities and identified quantum effects that may be important for highly efficient energy transfer. Many questions remain, however, including whether the coherences observed are electronic and/or vibrational in nature and what role they play. We utilize a two-color, four-wave mixing experiment with control of the wavelength and polarization to selectively excite specific coherence pathways. For the light-harvesting complex PC645, from cryptophyte algae, we reveal and identify specific contributions from both electronic and vibrational coherences and determine an excited-state structure based on two strongly coupled electronic states and two vibrational modes. Separation of the coherence pathways also uncovers the complex evolution of these coherences and the states involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.