Abstract

Measurement is at the core of scientific discovery. However, some quantities, such as economic behavior or intelligence, do not allow for direct measurement. They represent latent constructs that require surrogate measurements. In other scenarios, non-observed quantities can influence the variables of interest. In either case, models with latent variables are needed. Here, we investigate fused latent and graphical models that exhibit continuous latent variables and discrete observed variables. These models are characterized by a decomposition of the pairwise interaction parameter matrix into a group-sparse component of direct interactions and a low-rank component of indirect interactions due to the latent variables. We first investigate when such a decomposition is identifiable. Then, we show that fused latent and graphical models can be recovered consistently from data in the high-dimensional setting. We support our theoretical findings with experiments on synthetic and real-world data from polytomous item response theory studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.