Abstract

Alzheimer's disease (AD) is heterogeneous, but existing methods for capturing this heterogeneity through dimensionality reduction and unsupervised clustering have limitations when it comes to extracting intricate atrophy patterns. In this study, we propose a deep learning based self-supervised framework that characterizes complex atrophy features using latent space representation. It integrates feature engineering, classification, and clustering to synergistically disentangle heterogeneity in Alzheimer's disease. Through this representation learning, we trained a clustered latent space with distinct atrophy patterns and clinical characteristics in AD, and replicated the findings in prodromal Alzheimer's disease. Moreover, we discovered that these clusters are not solely attributed to subtypes but also reflect disease progression in the latent space, representing the core dimensions of heterogeneity, namely progression and subtypes. Furthermore, longitudinal latent space analysis revealed two distinct disease progression pathways: medial temporal and parietotemporal pathways. The proposed approach enables effective latent representations that can be integrated with individual-level cognitive profiles, thereby facilitating a comprehensive understanding of AD heterogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.