Abstract

The blue shifting of vibrational frequencies in hydrogen bonded molecules, as observed in aqueous environments, has been attributed to local partial charge transfer from solvation. Here, we extrapolate the blue shift model to the stronger ionic interactions between hydrogen bond acceptors associated with protonation through augmented pH levels and competitive interactions with counter ion pairing. The chemical model we utilize in this work is the aqueous pyridine-pyridinium equilibrium to characterize the blue shifts observed in the pyridinium chloride ionic system. The observed agreement between observed experimental and calculated spectral shifts shows that the blue shifting model can be extrapolated to stronger interactions and accurately describe the nature of the hydrogen bond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.