Abstract

In previous work we established a multilinear duality and factorisation theory for norm inequalities for pointwise weighted geometric means of positive linear operators defined on normed lattices. In this paper we extend the reach of the theory for the first time to the setting of general linear operators defined on normed spaces. The scope of this theory includes multilinear Fourier restriction-type inequalities. We also sharpen our previous theory of positive operators. Our results all share a common theme: estimates on a weighted geometric mean of linear operators can be disentangled into quantitative estimates on each operator separately. The concept of disentanglement recurs throughout the paper. The methods we used in the previous work - principally convex optimisation - relied strongly on positivity. In contrast, in this paper we use a vector-valued reformulation of disentanglement, geometric properties (Rademacher-type) of the underlying normed spaces, and probabilistic considerations related to p-stable random variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.