Abstract

We calculate the two-qubit disentanglement due to classical random telegraph noise using the quasi-Hamiltonian method. This allows us to obtain analytical results even for strong coupling and mixed noise, important when the qubits have tunable working point. We determine when entanglement sudden death and revival occur as functions of qubit working point, noise coupling strength and initial state entanglement. For extended Werner states, we show that the concurrence is related to the difference of two functions: one is related to dephasing and the other longitudinal relaxation. A physical intepretation based on the generalized Bloch vector is given: revival only occurs for strongly-coupled noise and comes from the angular motion of the vector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.