Abstract

Disentangled ultrahigh molecular weight polyethylene dUHMWPE (Mw ∼ 2.106Da) particles in a reactor blend with HDPE are catalytically prepared from ethylene, mediated by a new catalyst from N,N'-(2,6-pyridinediyl diethylidyne) bis[2,6-di-3-propenyl-benzenamine] iron dichloride and triethyl aluminum. These particles could be laser sintered, but not automatically processed in an SLS machine. The same catalyst supported on microsilica particles gives access to composite dUHMWPE@silica particle powder with particle sizes below 200 µm. Testing bars prepared by heat pressing have an Emod of 150 MPa, an elongation at break at 450 % and an ultimate strength of 39 ± 11 MPa. A SEM image indicates a silica induced crystallization into pseudo spherulites of 500 µm size. The dUHMWPE@silica composite particles have an fcc flowability value of 3.4 in a ring shear tester, and a low density of 150 kg.m−3. Additivation with nanosilica powder (1 wt%) and carbon black (0.25 wt%) allowed to process the composite in an SLS machine. The printed parts showed severe caking, but also a complete welding of the powder, albeit with voids on account of the low particle density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.