Abstract
Disentanglement is a useful property in representation learning, which increases the interpretability of generative models such as variational autoencoders (VAE), generative adversarial models, and their many variants. Typically in such models, an increase in disentanglement performance is traded off with generation quality. In the context of latent space models, this work presents a representation learning framework that explicitly promotes disentanglement by encouraging orthogonal directions of variations. The proposed objective is the sum of an autoencoder error term along with a principal component analysis reconstruction error in the feature space. This has an interpretation of a restricted kernel machine with the eigenvector matrix valued on the Stiefel manifold. Our analysis shows that such a construction promotes disentanglement by matching the principal directions in the latent space with the directions of orthogonal variation in data space. In an alternating minimization scheme, we use the Cayley ADAM algorithm, a stochastic optimization method on the Stiefel manifold along with the Adam optimizer. Our theoretical discussion and various experiments show that the proposed model is an improvement over many VAE variants in terms of both generation quality and disentangled representation learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.