Abstract
General face recognition has seen remarkable progress in recent years. However, large age gap still remains a big challenge due to significant alterations in facial appearance and bone structure. Disentanglement plays a key role in partitioning face representations into identity-dependent and age-dependent components for age-invariant face recognition (AIFR). In this paper we propose a multi-task learning framework based on mutual information minimization (MT-MIM), which casts the disentangled representation learning as an objective of information constraints. The method trains a disentanglement network to minimize mutual information between the identity component and age component of the face image from the same person, and reduce the effect of age variations during the identification process. For quantitative measure of the degree of disentanglement, we verify that mutual information can represent as metric. The resulting identity-dependent representations are used for age-invariant face recognition. We evaluate MT-MIM on popular public-domain face aging datasets (FG-NET, MORPH Album 2, CACD and AgeDB) and obtained significant improvements over previous state-of-the-art methods. Specifically, our method exceeds the baseline models by over 0.4% on MORPH Album 2, and over 0.7% on CACD subsets, which are impressive improvements at the high accuracy levels of above 99% and an average of 94%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.