Abstract
Session-based recommendation (SBR) has drawn increasingly research attention in recent years, due to its great practical value by only exploiting the limited user behavior history in the current session. The key of SBR is to accurately infer the anonymous user purpose in a session which is typically represented as session embedding, and then match it with the item embeddings for the next item prediction. Existing methods typically learn the session embedding at the item level, namely, aggregating the embeddings of items with or without assigned attention weights to items. However, they ignore the fact that a user's intent on adopting an item is driven by certain factors of the item (e.g., the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">leading actors</i> of an movie). In other words, they have not explored finer-granularity interests of users at the factor level to generate the session embedding, leading to sub-optimal performance. To address the problem, we propose a novel method called Disentangled Graph Neural Network (Disen-GNN) to capture the session purpose with the consideration of factor-level attention on each item. Specifically, we first employ the disentangled learning technique to cast item embeddings into the embeddings of multiple factors, and then use the gated graph neural network (GGNN) to learn the embedding factor-wisely based on the item adjacent similarity matrix computed for each factor. Moreover, the distance correlation is adopted to enhance the independence between each pair of factors. After representing each item with independent factors, an attention mechanism is designed to learn user intent to different factors of each item in the session. The session embedding is then generated by aggregating the item embeddings with attention weights of each item's factors. To this end, our model takes user intents at the factor level into account to infer the user purpose in a session. Extensive experiments on three benchmark datasets demonstrate the superiority of our method over existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.