Abstract
Tissue remodeling in pulmonary disease irreversibly alters lung functionality and impacts quality of life. Mechanical ventilation is amongst the few pulmonary interventions to aid respiration, but can be harmful or fatal, inducing excessive regional (i.e., local) lung strains. Previous studies have advanced understanding of diseased global-level lung response under ventilation, but do not adequately capture the critical local-level response. Here, we pair a custom-designed pressure–volume ventilator with new applications of digital image correlation, to directly assess regional strains in the fibrosis-induced ex-vivo mouse lung, analyzed via regions of interest. We discuss differences between diseased and healthy lung mechanics, such as distensibility, heterogeneity, anisotropy, alveolar recruitment, and rate dependencies. Notably, we compare local and global compliance between diseased and healthy states by assessing the evolution of pressure-strain and pressure–volume curves resulting from various ventilation volumes and rates. We find fibrotic lungs are less-distensible, with altered recruitment behaviors and regional strains, and exhibit disparate behaviors between local and global compliance. Moreover, these diseased characteristics show volume-dependence and rate trends. Ultimately, we demonstrate how fibrotic lungs may be particularly susceptible to damage when contrasted to the strain patterns of healthy counterparts, helping to advance understanding of how ventilator induced lung injury develops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.