Abstract

Two new ecoepidemic models of predator–prey type are introduced. They feature prey that gather in herds. The specific novelty consists of the fact that the prey also has the ability to defend themselves if they are in large numbers. The two deterministic models differ in the way a disease spreading among the ecosystem is transmitted, either by direct contact among infected and susceptible animals or by the intake of a virus present in the environment. Only the disease-free and the endemic equilibrium are allowed, and they are analyzed for feasibility and stability. The boundedness results allow us to gather some results regarding global stability. Persistent oscillations can be triggered when some relevant model parameters cross specific thresholds, causing repeated epidemic outbreaks. Furthermore, the environmental contamination through a free viruses destabilizes the endemic equilibrium and may lead to large amplitude oscillations, which are dangerous because they are potentially harmful to ecosystems. The bifurcation parameters leading to the limit cycle onset are related to the epidemics. For instance, they could be the disease-related mortality and the transmission rates, whether by direct contact among individuals or through the environment. The results of this investigation may provide insights to theoretical ecologists and may provide useful indications for epidemic spread containment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call