Abstract

While significant reductions in certain air pollutant concentrations did not induce obvious mitigations of health risks, a shift from air quality management to health risk prevention and control might be necessary to protect public health. This study thus constructed an Air Quality Health Index (AQHI) for respiratory (Res-AQHI), cardiovascular (Car-AQHI), and allergic (Aller-AQHI) risk groups using mixed exposure under multi-air pollutants and portrayed their distribution and variation at multiple spatiotemporal scales using spatial analysis in GIS with the medical big data and air pollution remote sensing data by taking Hunan Province in China as a case. Results showed that the AQHIs constructed for specific health-risk groups could better express their risks than common AQHI and AQI. Moreover, based on the spatiotemporal association of health and environmental information, the allergic risk group in Hunan provided the highest health risk mainly affected by O3. The following cardiovascular and respiratory risk groups can be significantly attributed to NO2. Moreover, the spatiotemporal heterogeneity of AQHIs within regions was also evident. On the annual scale, the population in the air health risk hotspots for respiratory and cardiovascular risk decreased, while allergic risks increased. Meanwhile, on seasonal scale, the hotspots for respiratory and cardiovascular risks expanded significantly in winter while completely disappearing for allergic risk. These findings suggest that disease specific AQHIs effectively disclose the health effects of multi-air pollutants and their subsequently varied spatiotemporal distribution patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call