Abstract

Plant pathologists have seen many boom-and-bust cycles following the deployment of resistant varieties. These cycles result when pathogen populations adapt to the presence of a major resistance gene by evolving a new population that can overcome this resistance gene. The breakdown of genetic resistance is due to the evolution of the local pathogen population because of selection for mutants, recombinants, or immigrants that are better adapted to the resistant cultivar. To understand the process that leads to breakdown of a resistance gene, we need to understand the processes that govern pathogen evolution. Population geneticists have identified five evolutionary forces that interact to affect the evolution of organisms. We ranked these risks and developed a quantitative framework to predict the risk that a pathogen will evolve to overcome major resistance genes. Our hypothesis is that much of the durability of resistance genes is due to the nature of the pathogen population rather than to the nature of the resistance gene. The framework we developed can be used as a hypothesis to test against a large number of plant pathosystems. The underlying principles of the framework can be tested individually or in combination according to the available knowledge of the population genetics for any pathogen. We propose that this framework can be used to design breeding strategies to break the boom-and-bust cycle and lead to durable resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call