Abstract

Characterization of Parkinson’s disease (PD) progression using real-world evidence could guide clinical trial design and identify subpopulations. Efforts to curate research populations, the increasing availability of real-world data, and advances in natural language processing, particularly large language models, allow for a more granular comparison of populations than previously possible. This study includes two research populations and two real-world data-derived (RWD) populations. The research populations are the Harvard Biomarkers Study (HBS, N = 935), a longitudinal biomarkers cohort study with in-person structured study visits; and Fox Insights (N = 36,660), an online self-survey-based research study of the Michael J. Fox Foundation. Real-world cohorts are the Optum Integrated Claims-electronic health records (N = 157,475), representing wide-scale linked medical and claims data and de-identified data from Mass General Brigham (MGB, N = 22,949), an academic hospital system. Structured, de-identified electronic health records data at MGB are supplemented using a manually validated natural language processing with a large language model to extract measurements of PD progression. Motor and cognitive progression scores change more rapidly in MGB than HBS (median survival until H&Y 3: 5.6 years vs. >10, p < 0.001; mini-mental state exam median decline 0.28 vs. 0.11, p < 0.001; and clinically recognized cognitive decline, p = 0.001). In real-world populations, patients are diagnosed more than eleven years later (RWD mean of 72.2 vs. research mean of 60.4, p < 0.001). After diagnosis, in real-world cohorts, treatment with PD medications has initiated an average of 2.3 years later (95% CI: [2.1–2.4]; p < 0.001). This study provides a detailed characterization of Parkinson’s progression in diverse populations. It delineates systemic divergences in the patient populations enrolled in research settings vs. patients in the real-world. These divergences are likely due to a combination of selection bias and real population differences, but exact attribution of the causes is challenging. This study emphasizes a need to utilize multiple data sources and to diligently consider potential biases when planning, choosing data sources, and performing downstream tasks and analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.