Abstract

Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = ≥0.34, p = <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region.

Highlights

  • Plasmodium knowlesi malaria is widespread in Southeast Asia (SEA)

  • Patient cohort Of 389 patients admitted into the study between January 2008 and February 2011, 304 had PCR-confirmed single species Plasmodium infections: 232 (76%) P. knowlesi, 24 (8%) P. falciparum and 48 (16%) P. vivax (Text S1 and Figures S1a and S1b)

  • Parasitaemia was not used as a criterion for de-selection but a shift in parasitaemia was expected when approximately 50% of the relatively large group of patients with mild malaria were randomly removed

Read more

Summary

Introduction

Plasmodium knowlesi malaria is widespread in Southeast Asia (SEA). Descriptions of the aetiology of knowlesi malaria support a zoonotic origin of infection [1] and highlight variability in disease severity between those at risk across the region [2]. A change in pattern has recently emerged in Malaysian Borneo, where children living in a deforested area are infected [11] This new pattern may signal a change in vector or vector habitat preference and a move towards human-tohuman transmission. For the first time, we provide evidence that variant alleles of the Plasmodium Reticulocyte Binding-Like Protein invasion gene family can influence disease progression in patients with malaria. The reticulocyte binding-like protein (RBP) family is present in all Plasmodium species studied and members are involved in erythrocyte selection and invasion (Table S1). We address the question that parasitaemia in naturally acquired human infections is associated with particular alleles of the P. knowlesi merozoite invasion genes Pknbpxa and Pknbpxb

Materials and Methods
Results
Discussion
31. World Health Organization

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.