Abstract

With the increasingly available electronic medical records (EMRs), disease prediction has recently gained immense research attention, where an accurate classifier needs to be trained to map the input prediction signals (e.g., symptoms, patient demographics, etc.) to the estimated diseases for each patient. However, existing machine learning-based solutions heavily rely on abundant manually labeled EMR training data to ensure satisfactory prediction results, impeding their performance in the existence of rare diseases that are subject to severe data scarcity. For each rare disease, the limited EMR data can hardly offer sufficient information for a model to correctly distinguish its identity from other diseases with similar clinical symptoms. Furthermore, most existing disease prediction approaches are based on the sequential EMRs collected for every patient and are unable to handle new patients without historical EMRs, reducing their real-life practicality. In this paper, we introduce an innovative model based on Graph Neural Networks (GNNs) for disease prediction, which utilizes external knowledge bases to augment the insufficient EMR data, and learns highly representative node embeddings for patients, diseases and symptoms from the medical concept graph and patient record graph respectively constructed from the medical knowledge base and EMRs. By aggregating information from directly connected neighbor nodes, the proposed neural graph encoder can effectively generate embeddings that capture knowledge from both data sources, and is able to inductively infer the embeddings for a new patient based on the symptoms reported in her/his EMRs to allow for accurate prediction on both general diseases and rare diseases. Extensive experiments on a real-world EMR dataset have demonstrated the state-of-the-art performance of our proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.