Abstract

Disease mapping is a research field to estimate spatial pattern of disease risks so that areas with elevated risk levels can be identified. The motivation of this article is from a study of dengue fever infection, which causes seasonal epidemics in almost every summer in Taiwan. For analysis of zero-inflated data with spatial correlation and covariates, current methods would either cause a computational burden or miss associations between zero and non-zero responses. In this article, we develop estimating equations for a mixture regression model that accommodates spatial dependence and zero inflation for study of disease propagation. Asymptotic properties for the proposed estimates are established. A simulation study is conducted to evaluate performance of the mixture estimating equations; and a dengue dataset from southern Taiwan is used to illustrate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.