Abstract

Parasites are an integral part of virtually all food webs and species communities. Here we consider the invasion of a resident predator–prey system by an infectious disease with frequency-dependent transmission spreading within the predator population. We derive biologically plausible and insightful quantities (demographic and epizootiological reproduction numbers) that allow us to completely determine community composition. Successful disease invasion can have two contrary effects in driving its host population to extinction or in stabilizing predator–prey cycles. Our findings contradict predictions from previous models suggesting a destabilizing effect of parasites. We show that predator infection counteracts the paradox of enrichment. In turn, parasite removal from food webs can have catastrophic effects. We discuss the implications for biological control and resource management on more than one trophic level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.