Abstract

BackgroundPolycystic kidney disease (PKD) is an inherited disease that is life‐threatening. Multiple cysts are present in the bilateral kidneys of PKD patients. The progressively enlarged cysts cause structural damage and loss of kidney function.MethodsThis study examined and analyzed 12 families with polycystic kidney disease. Whole exome sequencing (WES) or whole genome sequencing (WGS) of the probands was performed to detect the pathogenic genes. The candidate gene segments for lineal consanguinity in the family were amplified by the nest PCR followed by Sanger sequencing. The variants were assessed by pathogenic and conservational property prediction analysis and interpreted according to the American College of Medical Genetics and Genomics.ResultsNine of the 12 pedigrees were identified the disease causing variants. Among them, four novel variants in PKD1, c.6930delG:p.C2311Vfs*3, c.1216T>C:p.C406R, c.8548T>C:p.S2850P, and c.3865G>A:p.V1289M (NM_001009944.2) were detected. After assessment, the four novel variants were considered to be pathogenic variants and cause autosomal dominant polycystic kidney disease in family. The detected variants were interpreted.ConclusionThe four novel variants in PKD1, c.6930delG:p.C2311Vfs*3, c.1216T>C:p.C406R, c.8548T>C:p.S2850P, and c.3865G>A:p.V1289M (NM_001009944.2) are pathogenic variants and cause autosomal dominant polycystic kidney disease in family.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call