Abstract

Action myoclonus-renal failure syndrome (AMRF) is caused by mutations in the lysosomal integral membrane protein type 2 (LIMP-2/SCARB2). LIMP-2 was identified as a sorting receptor for beta-glucocerebrosidase (beta-GC), which is defective in Gaucher disease. To date, six AMRF-causing mutations have been described, including splice site, missense and nonsense mutations. All mutations investigated in this study lead to a retention of LIMP-2 in the endoplasmic reticulum (ER) but affect the binding to beta-GC differentially. From the three nonsense mutations, only the Q288X mutation was still able to bind to beta-GC as efficiently as compared with wild-type LIMP-2, whereas the W146SfsX16 and W178X mutations lost their beta-GC-binding capacity almost completely. The LIMP-2 segment 145-288, comprising the nonsense mutations, contains a highly conserved coiled-coil domain, which we suggest determines beta-GC binding. In fact, disruption of the helical arrangement and amphiphatic nature of the coiled-coil domain abolishes beta-GC binding, and a synthetic peptide comprising the coiled-coil domain of LIMP-2 displays pH-selective multimerization properties. In contrast to the reduced binding properties of the nonsense mutations, the only missense mutation (H363N) found in AMRF leads to increased binding of beta-GC to LIMP-2, indicating that this highly conserved histidine modifies the affinity of LIMP-2 to its ligand. With the present study, we demonstrate that disruption of the coiled-coil structure or AMRF disease-causing mutations abolish beta-GC binding, indicating the importance of an intact coiled-coil structure for the interaction of LIMP-2 and beta-GC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.