Abstract

Diagnosis of human disease is a more difficult and complex process since it requires the consideration of various factors and symptoms to make a decision. Generally, the classification of diseases with fuzzy values is the most interesting topic because of accurate results. In this paper, we design a Bat-based Random Forest (BbRF) framework to enhance the performance of categorizing diseases with fuzzy values which also protect the privacy of the developed scheme. It involves pre-processing, attributes selection, fuzzy value generation, and classification. Additionally, the developed framework is implemented in Python tool and patient disease datasets are used for implementation. Moreover, pre-processing remove the error and noise, attributes are selected based on the duration of diseases. Finally, classify the patient disease based on the generated fuzzy value. To prove the efficiency of the developed framework, attained results are compared with other existing techniques in terms of accuracy, sensitivity, specificity, F-measure, and precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.