Abstract

Prior to vaccine introduction in 2006, rotavirus was the leading cause of severe diarrhea in children under five years of age in the U.S. Vaccination of infants has led to major reductions in disease burden, a shift in the seasonal peak and the emergence of a biennial pattern of disease. However, rotavirus vaccine coverage has remained relatively low (70-75%) compared to other infant immunizations in the U.S. Part of the reason for this lower coverage is that children whose care is provided by family practitioners (FP) have considerably lower probability of being vaccinated compared to those seen be pediatricians (PE). We used a dynamic transmission model to assess the impact of improving rotavirus vaccine coverage by FP and/or PE on rotavirus gastroenteritis (RVGE) incidence and seasonal patterns. A deterministic age-structured dynamic model with susceptible, infectious, and recovered compartments (SIRS model) was used to simulate rotavirus transmission and vaccination. We estimated the reduction of RVGE cases by 2 doses of rotavirus vaccine with three vaccination scenarios: (Status Quo: 85% coverage by pediatricians and 45% coverage by family practitioners; Improved FP: 85% coverage by pediatricians and family practitioners; Improved FP+PE: 95% coverage by pediatricians and family practitioners). In addition, we tested the sensitivity of the model to the assumption of random mixing patterns between children visiting pediatricians and children visiting family practitioners. In this model, higher vaccine coverage provided by family practitioners and pediatricians leads to lower incidence of severe RVGE cases (23% averted in Improved FP and 57% averted in Improved FP+PE compared to Status Quo) including indirect effects. One critical impact of higher total vaccine coverage is the effect on rotavirus epidemic patterns in the U.S.; the biennial rotavirus epidemic patterns shifted to reduced annual epidemic patterns. Additionally, assortative mixing patterns in children visiting pediatricians and family practitioners amplify the impact of increasing vaccine coverage. Other high-income countries that introduced vaccine have not experienced biennial patterns, like the U.S. Our results suggest that increasing overall vaccine coverage to 85% among infants would lead to an overall reduction in incidence with annual epidemic patterns.

Highlights

  • Rotavirus is the leading cause of severe diarrhea, hospitalization, and diarrhea related deaths in infants and children younger than 5 years old [1]

  • Higher vaccine coverage provided by family practitioners and pediatricians leads to lower incidence of severe rotavirus gastroenteritis (RVGE) cases (23% averted in Improved FP and 57% averted in Improved FP+PE compared to Status Quo) including indirect effects

  • S.; the biennial rotavirus epidemic patterns shifted to reduced annual epidemic patterns

Read more

Summary

Introduction

Rotavirus is the leading cause of severe diarrhea, hospitalization, and diarrhea related deaths in infants and children younger than 5 years old [1]. Before the introduction of rotavirus vaccines in 2006, rotavirus caused an estimated 200,000 emergency room visits, 55,000 to 70,000 hospitalizations, and 20 to 60 deaths annually in children younger than 5 years of age, leading to approximately $1 billion in direct and indirect costs to the U.S [2]. Prior to vaccine introduction in 2006, rotavirus was the leading cause of severe diarrhea in children under five years of age in the U.S Vaccination of infants has led to major reductions in disease burden, a shift in the seasonal peak and the emergence of a biennial pattern of disease. We used a dynamic transmission model to assess the impact of improving rotavirus vaccine coverage by FP and/or PE on rotavirus gastroenteritis (RVGE) incidence and seasonal patterns

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call