Abstract

Pelizaeus-Merzbacher disease (PMD) is a dysmyelinating disease caused by mutations, deletions, or duplications of the proteolipid protein (PLP) gene. Mutant forms of PLP are retained in the endoplasmic reticulum (ER), and the resulting accumulation of mutant protein is thought to be a direct cause of oligodendrocyte cell death, which is the primary clinical feature of PMD. The molecular mechanisms underlying the toxicity of mutant PLP are however currently unknown. We report here that PMD-linked mutations of PLP are associated with the accelerated assembly of the protein into stable homooligomers that resemble mature, native PLP. Thus although WT PLP forms stable oligomers after an extended maturation period, most likely at the cell surface, mutant forms of PLP rapidly assemble into such oligomers at the ER. Using PLP mutants associated with diseases of varying severity, we show that the formation of stable oligomers correlates with the development of PMD. Based on these findings, we propose that the premature oligomerization of PLP in the ER of oligodendrocytes contributes to the pathology of PMD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.