Abstract

Debris flow, the most extensive and most severe geological hazard along the Karakoram Highway, frequently blocks the Karakoram Highway. Based on the methods of field measurement, indoor statistical analysis and theoretical research, this paper discusses the relationship between the four types of debris flow along the Karakoram Highway. The four types are the rain type, the rain glacier type, the glacier ice lake break type and the freeze–thaw type, and their particle characteristics and gully slope are also considered in the discussion. The results are as follows: (1) The provenance particle size of debris flow is controlled by the type of debris flow. Generally, the provenance average particle equivalent diameter of the debris flow induced by the glacier ice lake type is relatively small, followed by the freeze–thaw type and glacier ice lake break type, and the equivalent diameter of the debris flow induced by the rain type is relatively large; (2) The gully slope coefficient of the debris flow C along the Karakoram Highway is greater than 1, and it increases with the increase in gully slope α, that is, the larger C is, the steeper the gully slope will be; (3) The gully slope coefficient C and the average particle equivalent diameter D of the four types of debris flow are distributed in the ellipse with them as the axis. This ellipse quantitatively describes the relationship between the gully slope of the four types of debris flow and the corresponding provenance particle characteristics. This paper analyzes the formation and causes of debris flow along the Karakoram Highway. It accurately understands the scientific connotation of debris flow formation in the surface matrix layer and improves the diversity, stability, and sustainability of the ecosystem. The paper also proposes ideas and suggestions for promoting the ecological protection and restoration of the Karakoram Highway. Therefore, the research has a certain theoretical significance and practical application value for the appropriate selection and rational design of the debris flow prevention projects along the China–Pakistan Highway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call