Abstract

The port-Hamiltonian approach to modeling and control of complex physical systems has arisen as a systematic and unifying framework during the last 20 years. The port-Hamiltonian modeling captures the physical properties of the considered system including the energy dissipation, stability and passivity properties as well as the presence of conservation laws. Another important issue the port-Hamiltonian approach deals with is the interconnection of the physical system with other physical systems creating the so-called physical network. In real applications the dimensions of such interconnected port-Hamiltonian state-space systems rapidly grow both for lumped- and (spatially discretized) distributed-parameter models. Therefore an important issue concerns (structure preserving) model reduction of these high-dimensional models for further analysis and control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.