Abstract
This paper seeks to highlight two approaches to the solution of stochastic control and optimal stopping problems in continuous time. Each approach transforms the stochastic problem into a deterministic problem. Dynamic programming is a well-established technique that obtains a partial/ordinary differential equation, variational or quasi-variational inequality depending on the type of problem; the solution provides the value of the problem as a function of the initial position (the value function). The other method recasts the problems as linear programs over a space of feasible measures. Both approaches use Dynkin’s formula in essential but different ways. The aim of this paper is to present the main ideas underlying these approaches with only passing attention paid to the important and necessary technical details.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.