Abstract
Keyword Spotting (KWS) is an essential component in a smart device for alerting the system when a user prompts it with a command. As these devices are typically constrained by computational and energy resources, the KWS model should be designed with a small footprint. In our previous work, we developed lightweight dynamic filters which extract a robust feature map within a noisy environment. The learning variables of the dynamic filter are jointly optimized with KWS weights by using Cross-Entropy (CE) loss. CE loss alone, however, is not sufficient for high performance when the SNR is low. In order to train the network for more robust performance in noisy environments, we introduce the LOw Variant Orthogonal (LOVO) loss. The LOVO loss is composed of a triplet loss applied on the output of the dynamic filter, a spectral norm-based orthogonal loss, and an inner class distance loss applied in the KWS model. These losses are particularly useful in encouraging the network to extract discriminatory features in unseen noise environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.