Abstract

The characterization of the discriminative stimulus properties of naloxone has focused primarily on its actions at the mu opioid receptor, although naloxone also displays an affinity for delta and kappa receptor subtypes. The present study extends this characterization of the naloxone cue by investigating if relatively specific antagonists for the mu (naltrexone: 0.10-0.56 mg/kg), delta (naltrindole: 1-18 mg/kg), and kappa (MR2266: 1.8-10 mg/kg) opioid receptor subtypes will substitute for naloxone in animals trained to discriminate naloxone from its vehicle. The temporal nature of the naloxone cue was examined by varying pretreatment time points (15, 30, 45, 60 min). Finally, various doses of naltrexone methobromide (1-18 mg/kg) were assessed to determine peripheral mediation of the cue. Female Long-Evans rats (N = 30) received an injection of naloxone (1 mg/kg; i.p.) 15 min prior to a pairing of saccharin (20-min access) and the emetic LiCl (1.8 mEq; i.p.; n = 16, group NL) or vehicle (n = 14, group NW); on other days, they were injected with saline prior to saccharin alone. Substitution tests with compounds with various receptor affinities and selective CNS and PNS actions were then assessed. Only naloxone and naltrexone produced dose-dependent decreases in saccharin consumption. Naloxone administered at 15 and 30 min before saccharin produced decreases in consumption similar to that displayed on training days. Naltrexone methobromide substituted only at the highest dose tested (18 mg/kg). Naloxone's stimulus effects appear to be mediated centrally via activity at the mu opioid receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call