Abstract

Primarily, rats have served as subjects in Δ 9-tetrahydrocannabinol's (THC) discrimination studies although other species such as monkeys and pigeons have been used. While the introduction of the knockout and transgenic mice has vastly stimulated the study of the discriminative stimulus effects of drugs there is only a single published report of mice trained to discriminate THC. Thus, this study extended those results by providing a systematic replication that THC serves as an effective discriminative stimulus in mice and by further investigating the mechanisms of action involved in the THC discrimination model in the mouse. Male C57BL/6J mice were trained to discriminate 10 mg/kg THC from vehicle in 2-lever drug discrimination. THC fully and dose dependently substituted for itself. Cannabinoid indoles, except one with low cannabinoid CB 1 receptor affinity, substituted for THC. Anandamide failed to substitute for THC when administered alone but completely substituted when administered with the non-specific fatty acid amide hydrolase inhibitor, phenylmethylsulphonyl fluoride. As expected, nicotine failed to substitute for THC. Lastly, the cannabinoid CB 1 receptor antagonist rimonabant blocked THC's discriminative stimulus effects. Taken together these studies demonstrate THC's ability to produce discriminative stimulus effects as well as demonstrate its pharmacological specificity and mechanism of action in a two-lever drug discrimination mouse model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.