Abstract

Common subspace learning methods only utilize local or global structure in feature extraction, and cannot obtain the global optimal discriminative projection matrix. For this reason, this paper proposes a discriminative sparse subspace learning method based on the manifold regularization framework (DSSL-MR), which introduces the graph Laplacian matrix that reflects the intrinsic geometric structure of the sample as a penalty term. DSSL-MR simultaneously uses both sub-manifold and multi-manifold information of samples for obtaining optimal projection to enhance the discriminability of different classes in subspace. DSSL-MR uses the sparse property of the L2,1-norm to constrain the projection matrix, which can eliminate redundant features and select features that are significant for classification. It is a linear supervised method, which belongs to the Fisher discriminant analysis framework. Experimental results on multiple real-world datasets show that the algorithm is very effective in classification and has high recognition rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.