Abstract
The traditional manifold learning methods usually utilize the original observed data to directly define the intrinsic structure among data. Because the original samples often contain a deal of redundant information or it is corrupted by noises, it leads to the unreliability of the obtained intrinsic structure. In addition, the intrinsic structure learning and subspace learning are completely separated. For solving above problems, this paper presents a novel dimension reduction method termed discriminative sparse embedding (DSE) based on adaptive graph. By projecting the original samples into a low-dimensional subspace, DSE learns a sparse weight matrix, which can reduce the effects of redundant information and noises of the original data, and uncover essential structural relationship among the data. In DSE, the robust subspace is learned from the original data. Meanwhile, the intrinsic local structure and the optimal subspace can be simultaneously learned, in which they are mutually improved, and the accurate structure can be captured, and the optimal subspace can be obtained. We propose an alternative and iterative method to solve the DSE model. In order to evaluate the performance of DSE, it is compared with some state-of-the-art feature extraction algorithms. Various experiments show that our DSE is effective and feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.