Abstract

Synthetic aperture radar (SAR) image classification is an important part in the understanding and interpretation of SAR images. Each patch in SAR images has a scene category, but usually contains multiple land-cover classes or latent properties, which can be represented by topics in the probabilistic topic model (PTM). The representation and selection of discriminative features in PTM have a large impact on the classification results. Most of the existing feature learning methods do not make full use of high-level structure feature and the feature correlation within similar images to mine discriminative features. Therefore, this article proposes a discriminative sketch topic model with structural constraint (C-SSTM) for SAR image classification. In the proposed model, each image patch is characterized by structural and texture features. In particular, the sketch structural feature is based on the sketch map to represent the image local structure pattern. Then, the local image manifold information is preserved in terms of structure and texture. In the structural constraint, the texture and structure of each image patch are combined to learn discriminative latent semantic topics between image patches. Finally, each image patch is quantified by discriminative latent semantic topics instead of low-level representation. The experimental results tested on synthetic and real SAR images demonstrate that the proposed C-SSTM is able to learn effective structural feature representation from SAR images. Compared with other related approaches, C-SSTM produces competitive classification accuracies with high time efficiency.

Highlights

  • S YNTHETIC aperture radar (SAR) systems are capable of working under various seasons and weather conditionsManuscript received July 14, 2020; revised September 3, 2020; accepted September 8, 2020

  • This article proposes a C-SSTM model based on the sketch structural feature and structural constraint for SAR image classification

  • The SAR image classification results depend on the discriminative representation and selection of features

Read more

Summary

Introduction

Manuscript received July 14, 2020; revised September 3, 2020; accepted September 8, 2020. Date of publication September 15, 2020; date of current version September 30, 2020. With the rapid development of remote sensing technologies, a large number of SAR images are available. This situation makes manual interpretation a time-consuming and expensive process. The SAR image classification as an important part of image interpretation has attracted more and more attention [4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.