Abstract
Fine-grained video action recognition aims at identifying minor and discriminative variations among fine categories of actions. While many recent action recognition methods have been proposed to better model spatio-temporal representations, how to model the interactions among discriminative atomic actions to effectively characterize inter-class and intra-class variations has been neglected, which is vital for understanding fine-grained actions. In this work, we devise a Discriminative Segment Focus Network (DSFNet) to mine the discriminability of segment correlations and localize discriminative action-relevant segments for fine-grained video action recognition. Firstly, we propose a hierarchic correlation reasoning (HCR) module which explicitly establishes correlations between different segments at multiple temporal scales and enhances each segment by exploiting the correlations with other segments. Secondly, a discriminative segment focus (DSF) module is devised to localize the most action-relevant segments from the enhanced representations of HCR by enforcing the consistency between the discriminability and the classification confidence of a given segment with a consistency constraint. Finally, these localized segment representations are combined with the global action representation of the whole video for boosting final recognition. Extensive experimental results on two fine-grained action recognition datasets, i.e., FineGym and Diving48, and two action recognition datasets, i.e., Kinetics400 and Something-Something, demonstrate the effectiveness of our approach compared with the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.