Abstract
Ultra-widefield fundus image (UFI) has become a crucial tool for ophthalmologists in diagnosing ocular diseases because of its ability to capture a wide field of the retina. Nevertheless, detecting and classifying multiple diseases within this imaging modality continues to pose a significant challenge for ophthalmologists. An automated disease classification system for UFI can support ophthalmologists in making faster and more precise diagnoses. However, existing works for UFI classification often focus on a single disease or assume each image only contains one disease when tackling multi-disease issues. Furthermore, the distinctive characteristics of each disease are typically not utilized to improve the performance of the classification systems. To address these limitations, we propose a novel approach that leverages disease-specific regions of interest for the multi-label classification of UFI. Our method uses three regions, including the optic disc area, the macula area, and the entire UFI, which serve as the most informative regions for diagnosing one or multiple ocular diseases. Experimental results on a dataset comprising 5930 UFIs with six common ocular diseases showcase that our proposed approach attains exceptional performance, with the area under the receiver operating characteristic curve scores for each class spanning from 95.07% to 99.14%. These results not only surpass existing state-of-the-art methods but also exhibit significant enhancements, with improvements of up to 5.29%. These results demonstrate the potential of our method to provide ophthalmologists with valuable information for early and accurate diagnosis of ocular diseases, ultimately leading to improved patient outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.