Abstract

Changes in structural connectivity of the Alzheimer's brain have not been widely studied utilizing cutting-edge methodologies. This study develops an efficient structural connectome-based convolutional neural network (CNN) to classify the AD and uses explanations of CNNs' choices in classification to pinpoint the discriminative changes in white matter connectivity in AD. A CNN architecture has been developed to classify normal control (NC) and AD subjects from the weighted structural connectome. Then, the CNN classification decision is visually analyzed using gradient-based localization techniques to identify the discriminative changes in white matter connectivity in Alzheimer's. The cortical regions involved in the identified discriminative structural connectivity changes in AD are highly covered in the temporal/subcortical regions. A specific pattern is identified in the discriminative changes in structural connectivity of AD, where the white matter changes are revealed within the temporal/subcortical regions and from the temporal/subcortical regions to the frontal and parietal regions in both left and right hemispheres. The proposed approach has the potential to comprehensively analyze the discriminative structural connectivity differences in AD, change the way of detecting biomarkers, and help clinicians better understand the structural changes in AD and provide them with more confidence in automated diagnostic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call