Abstract

Deep generative models with latent variables have been used lately to learn joint representations and generative processes from multi-modal data, which depict an object from different viewpoints. These two learning mechanisms can, however, conflict with each other and representations can fail to embed information on the data modalities. This research studies the realistic scenario in which all modalities and class labels are available for model training, e.g. images or handwriting, but where some modalities and labels required for downstream tasks are missing, e.g. text or annotations. We show, in this scenario, that the variational lower bound limits mutual information between joint representations and missing modalities. We, to counteract these problems, introduce a novel conditional multi-modal discriminative model that uses an informative prior distribution and optimizes a likelihood-free objective function that maximizes mutual information between joint representations and missing modalities. Extensive experimentation demonstrates the benefits of our proposed model, empirical results show that our model achieves state-of-the-art results in representative problems such as downstream classification, acoustic inversion, and image and annotation generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.