Abstract
Conventional multi-view re-ranking methods usually perform asymmetrical matching between the region of interest (ROI) in the query image and the whole target image for similarity computation. Due to the inconsistency in the visual appearance, this practice tends to degrade the retrieval accuracy particularly when the image ROI, which is usually interpreted as the image objectness, accounts for a smaller region in the image. Since Privileged Information (PI), which can be viewed as the image prior, is able to characterize well the image objectness, we are aiming at leveraging PI for further improving the performance of multi-view re-ranking in this paper. Towards this end, we propose a discriminative multi-view re-ranking approach in which both the original global image visual contents and the local auxiliary PI features are simultaneously integrated into a unified training framework for generating the latent subspaces with sufficient discriminating power. For the on-the-fly re-ranking, since the multi-view PI features are unavailable, we only project the original multi-view image representations onto the latent subspace, and thus the re-ranking can be achieved by computing and sorting the distances from the multi-view embeddings to the separating hyperplane. Extensive experimental evaluations on the two public benchmarks, Oxford5k and Paris6k, reveal that our approach provides further performance boost for accurate image re-ranking, whilst the comparative study demonstrates the advantage of our method against other multi-view re-ranking methods.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.