Abstract

The vast majority of automatic speech recognition systems use hidden Markov models (HMMs) as the underlying acoustic model. Initially these models were trained based on the maximum likelihood criterion. Significant performance gains have been obtained by using discriminative training criteria, such as maximum mutual information and minimum phone error. However, the underlying acoustic model is still generative, with the associated constraints on the state and transition probability distributions, and classification is based on Bayes' decision rule. Recently, there has been interest in examining discriminative, or direct, models for speech recognition. This paper briefly reviews the forms of discriminative models that have been investigated. These include maximum entropy Markov models, hidden conditional random fields and conditional augmented models. The relationships between the various models and issues with applying them to large vocabulary continuous speech recognition will be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.