Abstract

The existing methods of fine-grained image recognition mainly devote to learning subtle yet discriminative features from the high-resolution input. However, their performance deteriorates significantly when they are used for low quality images because a lot of discriminative details of images are missing. We propose a discriminative information restoration and extraction network, termed as DRE-Net, to address the problem of low-resolution fine-grained image recognition, which has widespread application potential, such as shelf auditing and surveillance scenarios. DRE-Net is the first framework for weakly supervised low-resolution fine-grained image recognition and consists of two sub-networks: (1) fine-grained discriminative information restoration sub-network (FDR) and (2) recognition sub-network with the semantic relation distillation loss (SRD-loss). The first module utilizes the structural characteristic of minimum spanning tree (MST) to establish context information for each pixel by employing the spatial structures between each pixel and other pixels, which can help FDR focus on and restore the critical texture details. The second module employs the SRD-loss to calibrate recognition sub-network by transferring the correct relationships between every two pixels on the feature map. Meanwhile the SRD-loss can further prompt the FDR to recover reliable and accurate fine-grained details and guide the recognition sub-network to perceive the discriminative features from the correct relationships. Extensive experiments on three benchmark datasets and one retail product dataset demonstrate the effectiveness of our proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call