Abstract

Extreme learning machines (ELM) have been widely used in classification due to their simple theory and good generalization ability. However, there remains a major challenge: it is difficult for ELM algorithms to maintain the manifold structure and the discriminant information contained in the data. To address this issue, we propose a discriminant globality-locality preserving extreme learning machine (DGLELM) in this paper. In contrast to ELM, DGLELM not only considers the global discriminative structure of the dataset but also makes the best use of the local discriminative geometry information. DGLELM optimizes the projection direction of the ELM output weights by maximizing the inter-class dispersion and minimizing the intra-class dispersion for global and local data. Experiments on several widely used image databases validate the performance of DGLELM. The experimental results show that our approach achieves significant improvements over state-of-the-art ELM algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.